
Interaction between Metal Packages and the Enclosed MMICs  
 
 

Th. Bolz*†, Stu. Member, IEEE, B. Neuhaus*, Stu. Member, IEEE and A. Beyer*, Fellow, IEEE 
* Duisburg-Essen University, Campus Duisburg, Department of Electrical Engineering and 

  Information Techniques, Bismarckstr. 81, D-47048 Duisburg, Germany 
† IMST, Carl-Friedrich-Gauss-Str. 2, D-47475 Kamp-Lintfort, Germany 

E-mail: bolz@imst.de 
 

 
Abstract 

 
In this paper an inhomogenously filled cavity is 

investigated using TLM method. To determine the 
Green's functions in terms of impedance and 
admittance functions, a simple method is introduced. 
Furthermore, it is shown how to deduce equivalent 
circuits, which can be implemented into a commercial 
circuit simulator. Examples show the applicability of 
the technique proposed.  

 
1. Introduction 
 

In the past, for solving Maxwell’s equations several 
approaches – among others time domain techniques - 
are well established. In the time domain methods, 
space and time are discretized using different schemes. 
In the Transmission Line Matrix (TLM) method used 
here, the field space is discretized, in which the 
computational domain is filled with a mesh of 
orthogonal transmission lines. These lines periodically 
meet at points that are referred to as node center. As a 
TLM node, the local area surrounding each node 
center is understood. Now, the electromagnetic field in 
the space considered is mapped onto voltage impulses 
travelling on the transmission lines of the TLM mesh. 
The propagation properties of these voltage impulses 
in well-defined discrete time steps simulate the 
continuous phenomenon of the electromagnetic wave 
propagation in the physical space under investigation. 
The most commonly used node is the symmetrical 
condensed node (SCN), which is proposed by Johns 
[1] in 1987. Figure 1 shows a collective of such nodes. 
By using a system of transmission lines placed 
symmetrically on the branch-surface of each node, a 
12-port network can be defined. The ports are situated 
on the cell boundaries. Figure 2 shows a pair of 
transmission lines at the interface of two neighboring 
symmetrical condensed nodes (SCNs). 

  
Figure 1: Part of an SCN-TLM mesh. 
 
As depicted in Figure 2, voltage impulses travelling 

towards the cell boundary are designated as reflected 
impulses (superscript r) whereas voltage impulses 
travelling towards the node center are designated 
incident voltage impulses (superscript i). 

 

 
 

Figure 2: Interconnection of two neighboring 
nodes. 

 
In the following, this interface should be 

investigated and cleared up, how is to find for it a 
suitable description using well-known tools from the 
theory of linear networks. 
 



2. The Green’s Functions in terms of 
Impedance or Admittance Functions 
 

For simplicity the deduction of equivalent circuits 
for the mutual coupling between cavity modes and 
surface current densities supported by the microstrip 
structure within an inhomogenously filled cavity is 
demonstrated for field components polarized in x and y 
direction as depicted in Figure 3. 

 
Figure 3: Geometry of a cavity under investigation. 

In Figure 3, the electric dipole moment  of the 

electric current density  and magnetic dipole 

moment  of the magnetic current density 
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 as 
well as the corresponding excited electromagnetic field 
components  and  are depicted. The relation 

between the dipole moments and the surface current 
densities are shown by equation (1) an (2): 
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The spatial distribution of the sources are described by 
the delta distributions )( ixx −δ  and )( iyy −δ , 

respectively, whereas  is the unit vector with kur

{ }zyxk uuuu rrrr ,,∈ . In TLM, the implementation of the 

dipole sources can be accomplished by the excitation 
of the electric current or the voltage of the dipole 
moments at the interface of two adjacent cells (Figure 
2). In addition, the spatial resolution in the TLM mesh 
is given by the cell dimensions; in this case they are: 

. If the electric current i  
excited at the boundary cell is orientated in y-direction 
(Figure 3), an equivalent circuit shown in Figure 4a) 
can be deduced. 
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In Figure 4a) is the characteristic impedance of 
the TLM transmission lines, and i  current of the 

electric dipole moment . 
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Figure 4: Equivalent circuits. 
a) Equivalent circuit for current excitation. 
b) Equivalent circuit for voltage excitation. 

 
Using the duality principle, the excitation of a voltage 
at the cell boundary can be described by the equivalent 
circuit drawn in Figure 4b). Alternatively the classical 
excitation of voltages at the cell boundary could be 
used. From the equivalent circuits given in Figure 4 the 
voltage impulses injected to the next time step at the 
cell boundary can be obtained by 
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Beside the spatial distribution, the electric and 
magnetic current sources exhibit a time dependence. In 
TLM for the electric current and the voltage  of 
the electric and magnetic dipole moments a modulated 
Gaussian impulse is used, which is given by 
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The expressions (7) and (8) are used for excitation 
with { }via ,∈ .  It is worth a mention that expression 



(8) is the Fourier transform of a(t), and it is valid for 
only positive frequencies. Furthermore, with regard to 
Gaussian pulse excitation the Green's functions are 
determined in a limited frequency range. 

Consider the cavity in Figure 3, which is filled by a 
planar dielectric layer of thickness . The 
electromagnetic fields stimulated by a current or 
magnetic surface density according to equations (1) 
and (2) can be determined analytically using modal 
expansion [2]. For example, the electric field 

component 
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Herein,  means the y-component of the ortho-

normalized modal function describing the transversal 
electric field distribution. Furthermore, 

Eymnt

mnlZ  is the 
overall impedance seen at the location . Using 
the duality principle, the corresponding magnetic field 
component yields:  
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The quantities containing in expression (10) are 
analogous to those given in (9) and explained above. 

It is well known that in the environment of a 
resonance frequency the impedance mnlZ  can be 
described by a shunt-tank circuit. According to the 
duality principle, the admittance mnlY can be realized 
by a series-tank circuit. Both circuits are characterized 
by their Laplace transforms as given below: 

( ) ,1
22
rmnlmnl

mnl p
p

C
pZ

ω+
⋅=   (11) 

( ) 22

1

rmnlmnl
mnl p

p
L

pY
ω+

⋅=   (12) 

with the resonance angular frequency given by 
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By inserting the latter expressions (11) – (13) into the 
field descriptions given by (9) and (10) and applying 
an inverse Laplace transform, the field may be 
obtained in time domain, too. For instance, the 

electromagnetic fields are to describe in terms of 
phase-shifted cosine functions. In lossy case, they are 
additionally damped. 

Using the relation
i

mnl
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yj dl
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E =  from (9), (11) and 

(13), the Green's functions in terms of impedance 
function both in the frequency and time domain can be 
determined 
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The Green's function in terms of admittance function 
may be analogously obtained. 
By inspection of (14), an equivalent circuit can be 
determined (Figure 5a). Accordingly, an equivalent 
circuit yields for the admittance (Figure 5b)). 

 

 
 

Figure 5: Equivalent circuits. 
a) Circuit model of the impedance function
b) Circuit model of the admittance function

 
In the equivalent circuit of Figure 5a) the turn 

 and  are: in jn
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Using the duality principle for the admi
representation of the Green's function, s
expressions for the turn ratios  and ma

obtained. 
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3. Results and Discussion  
 

In figure 6 the dimensions of a microstip line with 
a shunt stub at the center of the line is shown. 
(Figure 6). 

 
 
Figure 6: Geometry of a shielded microstrip line 
with a shunt stub. 

Using the technique described above, the 
interaction between the microstrip structure and its 
package was proven by calculating the 
transmission response 21s  of this structure [3]. 

The results between different methods are shown in 
Figure 7. 

 
Figure 7: The magnitude of the forward 
transmission coefficient. 

The results obtained by Burke [4] and the full wave 
simulator Agilent HFSS with the method introduced 
(Figure 7) are in good agreement. 
Next, another microstrip structure was analysed, which 
is drawn in Figure 8 along with its dimensions. Again, 
the results from Burke [4] and those from Agilent 
HFSS are compared. As one can observe from Figure 
9, the results calculated by means of the technique 
proposed, are in good agreement with the independent 
evidences. 

 
Figure 8: Geometry of a shielded microstrip gap. 

 
Figure 9: The magnitude of the forward 
transmission coefficient. 

 
4. Conclusion  
 

In this paper a technique allowing the 
determination of Green's functions in terms of 
impedance and admittance function is presented. It 
allows the calculation of the interaction between cavity 
modes and current densities supported by microstrip 
structures within the cavity. 
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